
PH
YS

IC
S

Emulsion patterns in the wake of a liquid–liquid phase
separation front
Pepijn G. Moermana,b, Pierre C. Hohenberga, Eric Vanden-Eijndenc, and Jasna Brujica,1

aCenter for Soft Matter Research, Department of Physics, New York University, New York, NY 10003; bDebye Institute for Nanomaterials Science, Utrecht
University, Utrecht 3584, Netherlands; and cCourant Institute of Mathematical Sciences, New York University, New York, NY 10012

Edited by Tom C. Lubensky, University of Pennsylvania, Philadelphia, PA, and approved February 27, 2018 (received for review September 15, 2017)

Miscible liquids can phase separate in response to a composi-
tion change. In bulk fluids, the demixing begins on molecular-
length scales, which coarsen into macroscopic phases. By con-
trast, confining a mixture in microfluidic droplets causes sequen-
tial phase separation bursts, which self-organize into rings of oil
and water to make multilayered emulsions. The spacing in these
nonequilibrium patterns is self-similar and scale-free over a range
of droplet sizes. We develop a modified Cahn–Hilliard model, in
which an immiscibility front with stretched exponential dynam-
ics quantitatively predicts the spacing of the layers. In addition,
a scaling law predicts the lifetime of each layer, giving rise to a
stepwise release of inner droplets. Analogously, in long rectan-
gular capillaries, a diffusive front yields large-scale oil and water
stripes on the time scale of hours. The same theory relates their
characteristic length scale to the speed of the front and the rate of
mass transport. Control over liquid–liquid phase separation into
large-scale patterns finds potential material applications in living
cells, encapsulation, particulate design, and surface patterning.
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One can distinguish two broad classes of nonequilibrium pat-
terns arising from instabilities (1, 2). The first are known

as Turing-type patterns (3, 4), which occur in driven systems
when a linear instability on a given length scale is stabilized
by nonlinear effects to create a pattern on that same spatial
scale. Examples include reaction–diffusion patterns in chemical
and biological systems (5–7) and Rayleigh–Bénard or Taylor–
Couette patterns in hydrodynamics (8). Patterns of this type
are generated by dynamical instabilities that propagate with,
for example, a moving front (9) or a temperature quench (10).
In both cases, the length scale is initially set by the pattern-
forming instability and the magnitude depends on the balance
between the deterministic reaction and the stochastic diffu-
sion force (11). The linear instability provides the fastest grow-
ing modes and can lead to steady-state structures that resem-
ble those in equilibrium, such as crystal lattices with defects,
but the nonequilibrium patterns require an energy input, or
source term.

By contrast, in the second class of patterns, a mixture of liquids
in a single phase undergoes bulk phase separation (12–14), which
entails constantly evolving length scales and time scales that
eventually separate into macroscopic phases (15). Surprisingly,
the same experiment in a microfluidic droplet can result in long-
lived patterns (16–18), stabilized on mesoscopic length scales.
For example, a miscible droplet of diethylphthalate (DEP) oil,
water, and ethanol (19) demixes upon contact with the aque-
ous phase, according to the phase diagram shown in Fig. S1, to
give alternating layers of oil and water (20), as shown in Fig. 1.
Empirically, the patterns depend on the initial composition, vis-
cosity, and the interfacial tension (21, 22). The mechanism for
the sorting of the oil and water phases into well-defined patterns
requires elucidation. Here, we develop a model to explain the
emerging length scales as a function of experimental parameters
in both microfluidic droplets and inside long capillaries. In the

experiments, we gain control over the patterns by varying the
quench rate and composition, with results that are in good agree-
ment with theoretical predictions. A practicable consequence is
that the stepwise release time of each layer in the pattern could
be tuned by its size, given a choice of surfactant to stabilize
the layers.

Fig. 1 shows the temporal evolution of phase separation bursts
and ordering that create a quadruple emulsion of alternating lay-
ers of oil and water (see Movie S1). Upon contact with an aque-
ous solution of 0.1 wt% F127 pluronic, the ethanol leaks out of
the ternary droplet, as shown by the measured volume change
over time in Fig. S2. This loss of ethanol from the droplet into
the aqueous phase drives phase separation when the ethanol con-
centration ce(x, t) drops below a critical value c?. Since ethanol
is equally soluble in oil and water, we shall model the system as a
binary mixture of oil and water, where the ethanol concentration
plays the role of quench control parameter. We can model the
energetics of this mixture as a switch from a single to a double-
well Ginzburg–Landau potential according to the φ4-type energy
functional,

E [φ; ce ] =

∫
Ω

(
1
2
γ2|∇φ|2 + 1

2
f (ce)φ2 + 1

4
φ4)dx, [1]

where φ(x, t) = (cw (x, t) − co(x, t))/(cw (x, t) + co(x, t)) gives
the relative concentration of water to oil at time t and position x,
γ is the microscopic width of the interface between oil and water,
and f (ce) is a function that specifies the miscible region where
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Fig. 1. Pattern formation in demixing ternary liquids. Snapshots of a movie
(see Movie S1) showing the sequential bursts of phase separation of a mis-
cible droplet of water: DEP: ethanol (0.15:0.47:0.38) upon contact with the
continuous phase with 0.1 wt% F127 surfactant into four alternating layers
of oil and water.

ce > c? and f (ce)> 0 and the immiscible region where ce < c?
and f (ce)< 0 (see Supporting Information for details).

In bulk liquids, the system’s evolution on the energy landscape
(Eq. 1) toward equilibrium is described by the mass-conserving
Cahn–Hilliard (CH) equation (15), in which the liquids separate
into macroscopic phases via spinodal decomposition. In our case,
this picture is changed by the finite geometry as well as by mix-
ing effects inside the droplets. The droplets extruded from the
microfluidic device experience a shear interaction with the con-
tinuous fluid that carries them away, causing a self-circulation
flow with velocities on the order of several millimeters per sec-
ond (23). This process is different from the standard diffusive
law predicted by the Epstein–Plesset theory (24). The interfa-
cial tension gradient within the droplet effectively scoops small
droplets of oil or water toward the miscible region and results
in transport that is faster than diffusive on the length scale
of the droplet. A detailed theoretical treatment would couple
the CH equation with the Navier Stokes equations (25), which
could only be solved numerically from the start. Instead, here
we adopt a simplified description in which the CH equation is
modified at short length scales to capture fast transport. The
dynamics of φ is assumed to be relaxational, as opposed to
diffusive, using the chemical potential µ= δE/δφ=−γ2∆φ+
f (ce)φ+φ3 as the driving force. The faster-than-diffusive trans-
port effectively carries mass instantaneously across the entire
droplet, which can be described by the nonlocal Allen–Cahn
equation (26),

∂tφ=−τ−1 (µ− µ̄), [2]

where µ̄ is the spatial average of µ inside the droplet (see Sup-
porting Information for details). Once the motion of the immisci-
bility front is specified, the only fitting parameters in the model
are the interfacial length γ, which can be set to γ= 0 in the sharp
interface limit, and the relaxation time τ . It is important to note
that while the standard Allen–Cahn equation does not conserve
mass, the nonlocal equation Eq. 2 does, due to the term µ̄.

In the experiments, we measure the spacing λi between con-
secutive layers indexed by i , as shown in Fig. 2A, for a given initial
composition of water, oil (DEP), and ethanol (0.12:0.52:0.36).
We find that increasing the size of the mother droplet recreates
patterns that are independent of scale over a range of droplet
sizes (Fig. 2 A, i–iii), except that an additional small droplet is
stabilized in the center of a 200µm droplet (Fig. 2 A, iii) to make
quintuple emulsions, also shown in the corresponding simulation
in iv and in Movie S2. To compare these experimental results
with the model, we need to specify the dynamics of ethanol leak-
age. As mentioned above, due to shear-mixing, we empirically

determine the speed of the immiscibility front in Fig. 2B. To this
end, we measure the positions ri and times t of the creation of
the layers in the experiments, and we use these data to estimate
the location of the immiscibility front where ce(x, t) = c?. The
best fit shows that this front is spherically symmetric with a radius
r(t) that shrinks according to a stretched exponential with expo-
nent 1/2

r(t) =R exp(−
√

t/τc), [3]

where τc = 12.6 s is a characteristic relaxation time indepen-
dent of the droplet radius R. Solving Eq. 2 with Eqs. 1 and 3,
assuming f (ce) = +1 if |x|> r(t) (that is, ce(x, t)> c?) and
f (ce) =−1 if |x|< r(t) (that is, ce(x, t)< c?), reproduces the
spatiotemporal location of the phase separation bursts, in rather
good agreement with the data in Fig. 2B. This result provides
supporting evidence that fast mass transfer occurs on length
scales that are longer than the largest droplet radius. Moreover,
both the experiment and the model show that the spacing λi

between the layers decreases with i toward the center, over a
range of sizes of the mother droplet, as shown in Fig. 2C. This
spacing can be rescaled by the radius of the outer boundary of
each layer Ri to give a roughly constant ratio λi/Ri ≈ ρ= 0.5,
independent of layer number, as shown in Fig. 2, Inset. This
rescaling implies a linear relationship between consecutive radii
in droplets of all sizes, with a slope a = 1− ρ≈ 0.5, all of the way
down to the minimum droplet size with R = 2.5µm that can be
stabilized, as shown in Fig. 2D. Indeed, this test of self-similarity
can be seen visually in the experimental data (i–iii) and in the
model (iv) in Fig. 2A. The only remaining adjustable parame-
ter in the model is the relaxation time τ in Eq. 2, whose value
is obtained to be τ = 1.8 s by fitting to the data in Fig. 2C.
The relaxation time τ turns out to be seven times faster than
the ethanol leakage time τc = 12.6s in this case. This separa-
tion of time scales controls the sizes of the scale-free pattern.
To further test the model, we vary the concentration difference
∆ce = (ce,in− ce,out) inside and outside the droplet to modify the
speed of ethanol leakage. We find that self-similarity is preserved
in all cases, but the characteristic spacing between the layers,
ρ, increases with ∆ce , as shown in Fig. 2E. Analogously, if we
increase the leakage rate τ−1

c in the model, consistent with a
steeper ethanol gradient at the droplet interface, we recover the
same trend as in the experiments. The value of ρ is then used
to relate τ−1

c in the model and ∆ce in experiments to obtain an
approximately linear relation, as shown in the Inset of Fig. 2D.
Therefore, the patterns are governed by the interplay between
the speed at which the immiscibility front (ce(x, t) = c?) moves
inside the system and the rate at which phase separation and the
associated mass transport occurs.

In the model, the mechanism of pattern formation is captured
by the spatiotemporal evolution of composition along the radial
distance r as shown in Fig. 3. As ethanol leaks out, the uniform
miscible mixture first reaches the critical concentration at the
outer edge of the droplet (i and ii). The most abundant oil phase
begins to phase-separate via spinodal decomposition and the
immiscible region propagates inwards. To conserve mass, excess
water moves toward the center, where the interfacial tension is
the lowest. This process increases the water content of the inner
droplet until it crosses over to the water-rich side of the phase
diagram. Following further ethanol loss, the innermost droplet
separates into a water-rich layer (iii), and this process repeats
until the front reaches the center (iv and v). In this case, the
model generates a quintuple, metastable emulsion, which quanti-
tatively reproduces the experimentally observed layered pattern
in Fig. 2A. Previous models based on the standard CH equation
with a moving phase-separation front (27–29) have been used
to explain pattern formation for example in the context of alloy
manufacturing (30) or Liesegang rings (31, 32). In comparison
with ours, these models tend to predict patterns whose length
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scale is tied up to the microscopic interfacial length γ and they
fail to properly reproduce the mass-transport processes ahead of
the front.

In addition to the length scale, the lifetime of the multiple
emulsions can be tuned. The droplet stability is controlled by
the surfactant concentration and flow rate, as shown in Fig. S3.
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Fig. 4. Timed-release of inner layers of a multiple emulsion made from a
water, DEP, ethanol (0.15:0.47:0.38) mixture in the presence of 0.05 wt% F127
surfactant. (A) Snapshots of a movie (see Movie S3) showing the sequential
release of inner layers into the continuous phase. (B) Cumulative distribution
of inner layers released into the outer aqueous phase versus time for a single
burst of events in a triple emulsion N = 3 and two bursts for the quintuple
emulsion N = 5 from A. A histogram of the release times for the triple emul-
sion is given in Inset. (C) A confocal image of the cross-section of a z stack of a
quintuple emulsion, labeled with Nile Red dye. (D) Lifetime of inner layers ver-
sus their size. The fit represents the time at which the buoyancy force begins
to dominate, given by the relation r = A exp(−

√
t/τc), which implies that ln

(r) is linear in
√

t, as shown in Inset.

Below 0.1 wt% F127 surfactant in the aqueous phase, the multi-
ple emulsions become unstable and release their inner layers, as
shown in Fig. 4A and Movie S3. The measured release times are

plotted in the cumulative distribution C (t) in Fig. 4B for a triple
and a quintuple emulsion stabilized with a low concentration of
0.05 wt% pluronic surfactant. The quintuple emulsion undergoes
two bursts of events associated with the release of the large outer
and then the small inner oil layers, which are separated by a time
delay. The narrow histogram of release times P(t), shown in Fig.
4B, Inset, is indicative of a stochastic process with a much shorter
characteristic time than the lifetime. These results indicate that
the lifetime of each layer is controlled by its size.

The lifetime is set by a balance between the buoyancy force
caused by gravity, which scales with r3, and the inward force cen-
tering the droplets due to the surface tension gradient, which is
proportional to r2. Fig. 4C shows that the inner droplets, strongly
stabilized by surfactants, are not centered because gravity pushes
the oil down and the water up after the ethanol has leaked
out. During the stretched exponential leakage, the surface ten-
sion force that centers the droplets diminishes over time until
it equals the buoyancy force Ar2 exp(−

√
t/τc) = r3 so that the

release time t in the absence of strong surfactants occurs when
the buoyancy force starts to dominate, r =A exp(−

√
t/τc); here

A is a fit parameter with the dimension of the length that
encompasses the surface tension, the acceleration of gravity, etc.
Repeating experiments over a range of sizes reveals that the
data in Fig. 4D are in good agreement with the predicted scal-
ing law. Moreover, the Fig. 4D, Inset shows that the scaling

√
t

is linear in ln (r), with a fit that gives the proportionality con-
stant A= 1100µm and τc = 7 s, consistent with the highest leak-
age rate τ−1

c = 0.14 s−1 in Fig. 2D on a time scale that is just
four times faster than phase separation. These data lend addi-
tional support to the assumption that ethanol leakage follows a
stretched exponential decay, which drives the centering of the
layers.

Pattern formation can also be driven by a diffusive front
by simply placing the ternary mixture of water:DEP:ethanol
(0.145:0.475:0.38) in a rectangular capillary (50µm× 50µm×
3 cm), in contact with the aqueous phase. The slow leakage of
ethanol triggers a wave of phase separation (see Movie S4), leav-
ing behind stripes of alternating layers of oil and water over tens
of hours, as shown in the snapshots in Fig. 5A. The final ratio of
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stripe lengths between oil and water (0.77 : 0.23) agrees with the
initial composition, as measured by the ratio of the total sum of
all oil and water stripes. The appearance of consecutive stripes in
space and time, which traces the immiscibility front d , follows the
square root of time in Fig. 5B, consistent with a diffusive drive for
phase separation. Changing the initial composition results in dif-
ferent slopes of the lines, corresponding to the effective diffusion
constants D? shown in Inset. This diffusion constant depends
on the relative concentrations of ethanol inside ce,in and outside
ce,out the capillary, and it can be predicted by solving the diffusion
equation in one dimension with an absorbing boundary condition
at the end of the capillary. We obtain that the immiscibility front
where ce(x, t) = c? follows

d2(t) =D? t with D? =D erfinv(c?/ce,in), [4]

where we set ce,out = 0, erfinv denotes the inverse of the error
function, and D = 800µm2/s is the bare diffusion coefficient of
ethanol. Since we do not know the distance to the spinodal line
for each composition, we fit c? to obtain the experimental D? in
the Inset in Fig. 5B and find that ce,in− c? = 0.26± 0.03.

In this case, it is unphysical to assume that faster-than-diffusive
mass transport occurs over the effectively infinite capillary. Mass
is conserved by allowing fast transport in a finite region B(t) that
extends a phenomenological distance L ahead of the immisci-
bility front. In practice, this is implemented by assuming that φ
again obeys a nonlocal Allen–Cahn equation

∂tφ=−τ−1
(
µ−〈µ〉B(t)

)
[5]

if x∈B(t) and ∂tφ= 0 otherwise. Here 〈µ〉B(t) denotes the spa-
tial average of µ over the growing region B(t) and τ is the relax-
ation time (see Supporting Information for details about Eq. 5 and
its connection with Eq. 2). The relaxational dynamics in Eq. 5 is
consistent with a change of mobility in the standard CH equa-
tion and effectively captures the fast transport due to the inter-
facial tension gradient caused by the varying ethanol concentra-
tion along the capillary. This dependence is shown in Fig. S4,
measured using the pendant drop method. It turns out that the
solutions of Eq. 5 are rather insensitive to L and to the precise
definition of B(t), given in the Supporting Information. Using the
law (Eq. 4) to describe the diffusive motion of the immiscibil-
ity front and B(t) = {x ≤−(d(t) +L)< 0} as input in Eq. 5, we
find that the fitting parameter τ ≈ 35 min reproduces the lengths
λi of both oil and water stripes as a function of the layer num-
ber, as shown in Fig. 5C and Movies S5 and S6. The results were
obtained with L= 5 mm, but they do not vary for L in the range
1− 20 mm for the conditions of our experiment. Notice that the
vast difference between the values of τ used in the droplet and
the capillary experiments indicates that this parameter is set by
the leakage mechanism of ethanol, which is observed to be differ-
ent in both sets of experiments. Advective effects in the droplets

are absent in the capillary, but it remains an open question to
explain how these effects lead to the law in Eq. 3 rather than the
diffusive relation in Eq. 4.

The relaxation time τ is three orders of magnitude slower than
in the case of shear-mixed droplets. The model captures the nar-
rowing of stripes from the entrance of the capillary (at i = 61)
to their disappearance at i = 1 very well. The large scatter in the
data arises from other phenomena that begin to occur over these
long time scales, such as the coalescence of consecutive oil layers.
The periodic structure creates a macroscopic pattern that spans
a centimeter, as shown in Fig. 5D. Even though the length of the
pattern is determined by the dynamics, its scale can be captured
from the following dimensional analysis,

λ=
√
D?τ . [6]

This gives λ= 0.7 mm, which roughly corresponds to the sum of
an oil and water stripe pair at the opening of the capillary in Fig.
5D. This result confirms that the characteristic length scale of
the stripes is set by the dynamical interplay between the speed
of ethanol leakage and that of phase separation/mass transfer
and lies between the interfacial length γ and the longer length L.
Both emulsion droplets and capillaries demonstrate that liquid–
liquid phase separation in confinement leads to controllable pat-
terns in the wake of phase separation. The modified CH model
offers us predictive power over those patterns, which may turn
out to be useful in programmable coatings or the encapsulation
of active ingredients into multiple layers (33–35).

Materials and Methods
Ternary mixtures used in this study consist of water (Millipore), ethanol
(> 95% purity, Sigma Aldrich), and DEP (> 99% purity, Sigma Aldrich) with
various compositions. Droplets of sizes between 40 and 300 µm in diame-
ter were prepared by flowing the ternary phase through a glass microfluidic
channel into an aqueous solution of pluronic F127 surfactant (Sigma Aldrich,
0.1 wt% unless otherwise indicated) using a homebuilt microfluidic device.
This device consists of a square, tapered glass capillary (VitroCom) inserted
into a round capillary in a coaxial geometry. Both are encased by another
square glass capillary. The flow rate of the disperse phase was controlled
with Harvard syringe pumps and was 10 µL/h unless otherwise indicated.
The outer flow rate was controlled using air pressure with pressures varying
from 1 to 20 psi thus controlling the droplet size.

Phase separation experiments in capillaries were performed by dipping a
capillary into a ternary mixture for 5 s and subsequently into a solution of
F127 for 20 s to fill the remainder of the capillary. The ends were closed with
a Norland optical adhesive. Both the multiple emulsions and droplets and
the striped capillaries are observed using a bright-field Olympus microscope
equipped with a Thorlabs camera.
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